MakeItFrom.com
Menu (ESC)

EN 1.4313 Stainless Steel vs. C64800 Bronze

EN 1.4313 stainless steel belongs to the iron alloys classification, while C64800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4313 stainless steel and the bottom bar is C64800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 12 to 17
8.0
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Shear Strength, MPa 460 to 600
380
Tensile Strength: Ultimate (UTS), MPa 750 to 1000
640
Tensile Strength: Yield (Proof), MPa 580 to 910
630

Thermal Properties

Latent Heat of Fusion, J/g 280
220
Maximum Temperature: Mechanical, °C 780
200
Melting Completion (Liquidus), °C 1450
1090
Melting Onset (Solidus), °C 1400
1030
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 25
260
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
65
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
66

Otherwise Unclassified Properties

Base Metal Price, % relative 10
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.4
2.7
Embodied Energy, MJ/kg 34
43
Embodied Water, L/kg 110
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
51
Resilience: Unit (Modulus of Resilience), kJ/m3 870 to 2100
1680
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 27 to 36
20
Strength to Weight: Bending, points 23 to 28
19
Thermal Diffusivity, mm2/s 6.7
75
Thermal Shock Resistance, points 27 to 36
23

Alloy Composition

Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 12 to 14
0 to 0.090
Cobalt (Co), % 0
1.0 to 3.0
Copper (Cu), % 0
92.4 to 98.8
Iron (Fe), % 78.5 to 84.2
0 to 1.0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0.3 to 0.7
0
Nickel (Ni), % 3.5 to 4.5
0 to 0.5
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.040
0 to 0.5
Silicon (Si), % 0 to 0.7
0.2 to 1.0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5