MakeItFrom.com
Menu (ESC)

EN 1.4313 Stainless Steel vs. R30556 Alloy

Both EN 1.4313 stainless steel and R30556 alloy are iron alloys. They have 48% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4313 stainless steel and the bottom bar is R30556 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 12 to 17
45
Fatigue Strength, MPa 340 to 510
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
81
Shear Strength, MPa 460 to 600
550
Tensile Strength: Ultimate (UTS), MPa 750 to 1000
780
Tensile Strength: Yield (Proof), MPa 580 to 910
350

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 390
450
Maximum Temperature: Mechanical, °C 780
1100
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1400
1330
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 25
11
Thermal Expansion, µm/m-K 10
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
70
Density, g/cm3 7.8
8.4
Embodied Carbon, kg CO2/kg material 2.4
8.7
Embodied Energy, MJ/kg 34
130
Embodied Water, L/kg 110
300

Common Calculations

PREN (Pitting Resistance) 15
40
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
290
Resilience: Unit (Modulus of Resilience), kJ/m3 870 to 2100
290
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 27 to 36
26
Strength to Weight: Bending, points 23 to 28
22
Thermal Diffusivity, mm2/s 6.7
2.9
Thermal Shock Resistance, points 27 to 36
18

Alloy Composition

Aluminum (Al), % 0
0.1 to 0.5
Boron (B), % 0
0 to 0.020
Carbon (C), % 0 to 0.050
0.050 to 0.15
Chromium (Cr), % 12 to 14
21 to 23
Cobalt (Co), % 0
16 to 21
Iron (Fe), % 78.5 to 84.2
20.4 to 38.2
Lanthanum (La), % 0
0.0050 to 0.1
Manganese (Mn), % 0 to 1.5
0.5 to 2.0
Molybdenum (Mo), % 0.3 to 0.7
2.5 to 4.0
Nickel (Ni), % 3.5 to 4.5
19 to 22.5
Niobium (Nb), % 0
0 to 0.3
Nitrogen (N), % 0 to 0.020
0.1 to 0.3
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.7
0.2 to 0.8
Sulfur (S), % 0 to 0.015
0 to 0.015
Tantalum (Ta), % 0
0.3 to 1.3
Tungsten (W), % 0
2.0 to 3.5
Zinc (Zn), % 0
0.0010 to 0.1