MakeItFrom.com
Menu (ESC)

EN 1.4318 Stainless Steel vs. 413.0 Aluminum

EN 1.4318 stainless steel belongs to the iron alloys classification, while 413.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4318 stainless steel and the bottom bar is 413.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
80
Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 44
2.5
Fatigue Strength, MPa 340
130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
28
Shear Strength, MPa 520
170
Tensile Strength: Ultimate (UTS), MPa 740
270
Tensile Strength: Yield (Proof), MPa 380
140

Thermal Properties

Latent Heat of Fusion, J/g 290
570
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1430
590
Melting Onset (Solidus), °C 1380
580
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
140
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
120

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 2.8
7.6
Embodied Energy, MJ/kg 39
140
Embodied Water, L/kg 130
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 360
130
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 27
29
Strength to Weight: Bending, points 23
36
Thermal Diffusivity, mm2/s 4.0
59
Thermal Shock Resistance, points 17
13

Alloy Composition

Aluminum (Al), % 0
82.2 to 89
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16.5 to 18.5
0
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 70.2 to 77.4
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 0 to 2.0
0 to 0.35
Nickel (Ni), % 6.0 to 8.0
0 to 0.5
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
11 to 13
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25