MakeItFrom.com
Menu (ESC)

EN 1.4335 Stainless Steel vs. C85700 Brass

EN 1.4335 stainless steel belongs to the iron alloys classification, while C85700 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4335 stainless steel and the bottom bar is C85700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 45
17
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 570
310
Tensile Strength: Yield (Proof), MPa 230
110

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1410
940
Melting Onset (Solidus), °C 1370
910
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 14
84
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.3
25

Otherwise Unclassified Properties

Base Metal Price, % relative 25
24
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 4.4
2.8
Embodied Energy, MJ/kg 62
47
Embodied Water, L/kg 190
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
41
Resilience: Unit (Modulus of Resilience), kJ/m3 130
59
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 20
11
Strength to Weight: Bending, points 19
13
Thermal Diffusivity, mm2/s 3.7
27
Thermal Shock Resistance, points 12
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.8
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 24 to 26
0
Copper (Cu), % 0
58 to 64
Iron (Fe), % 49.4 to 56
0 to 0.7
Lead (Pb), % 0
0.8 to 1.5
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 20 to 22
0 to 1.0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.25
0 to 0.050
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.5 to 1.5
Zinc (Zn), % 0
32 to 40
Residuals, % 0
0 to 1.3