MakeItFrom.com
Menu (ESC)

EN 1.4347 Stainless Steel vs. 7049 Aluminum

EN 1.4347 stainless steel belongs to the iron alloys classification, while 7049 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4347 stainless steel and the bottom bar is 7049 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 23
6.2 to 7.0
Fatigue Strength, MPa 320
160 to 170
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 660
510 to 530
Tensile Strength: Yield (Proof), MPa 480
420 to 450

Thermal Properties

Latent Heat of Fusion, J/g 300
370
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1410
640
Melting Onset (Solidus), °C 1370
480
Specific Heat Capacity, J/kg-K 490
860
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
36
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
110

Otherwise Unclassified Properties

Base Metal Price, % relative 16
10
Density, g/cm3 7.7
3.1
Embodied Carbon, kg CO2/kg material 3.1
8.1
Embodied Energy, MJ/kg 44
140
Embodied Water, L/kg 170
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
31 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 570
1270 to 1440
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
45
Strength to Weight: Axial, points 24
46 to 47
Strength to Weight: Bending, points 22
46 to 47
Thermal Diffusivity, mm2/s 4.0
51
Thermal Shock Resistance, points 19
22 to 23

Alloy Composition

Aluminum (Al), % 0
85.7 to 89.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 25 to 27
0.1 to 0.22
Copper (Cu), % 0
1.2 to 1.9
Iron (Fe), % 62.2 to 69.4
0 to 0.35
Magnesium (Mg), % 0
2.0 to 2.9
Manganese (Mn), % 0 to 1.5
0 to 0.2
Nickel (Ni), % 5.5 to 7.5
0
Nitrogen (N), % 0.1 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.5
0 to 0.25
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
7.2 to 8.2
Residuals, % 0
0 to 0.15