MakeItFrom.com
Menu (ESC)

EN 1.4361 Stainless Steel vs. 5088 Aluminum

EN 1.4361 stainless steel belongs to the iron alloys classification, while 5088 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4361 stainless steel and the bottom bar is 5088 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 43
29
Fatigue Strength, MPa 220
180
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
25
Shear Strength, MPa 440
200
Tensile Strength: Ultimate (UTS), MPa 630
310
Tensile Strength: Yield (Proof), MPa 250
150

Thermal Properties

Latent Heat of Fusion, J/g 350
390
Maximum Temperature: Mechanical, °C 940
200
Melting Completion (Liquidus), °C 1370
640
Melting Onset (Solidus), °C 1330
540
Specific Heat Capacity, J/kg-K 490
900
Thermal Conductivity, W/m-K 14
120
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
98

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 3.6
9.0
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
76
Resilience: Unit (Modulus of Resilience), kJ/m3 160
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 23
32
Strength to Weight: Bending, points 21
38
Thermal Diffusivity, mm2/s 3.7
51
Thermal Shock Resistance, points 15
14

Alloy Composition

Aluminum (Al), % 0
92.4 to 94.8
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 16.5 to 18.5
0 to 0.15
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 58.7 to 65.8
0.1 to 0.35
Magnesium (Mg), % 0
4.7 to 5.5
Manganese (Mn), % 0 to 2.0
0.2 to 0.5
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 14 to 16
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 3.7 to 4.5
0 to 0.2
Sulfur (S), % 0 to 0.010
0
Zinc (Zn), % 0
0.2 to 0.4
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0
0 to 0.15