MakeItFrom.com
Menu (ESC)

EN 1.4361 Stainless Steel vs. EN 1.0108 Steel

Both EN 1.4361 stainless steel and EN 1.0108 steel are iron alloys. They have 63% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4361 stainless steel and the bottom bar is EN 1.0108 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
110
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 43
29
Fatigue Strength, MPa 220
150
Impact Strength: V-Notched Charpy, J 90
38
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Shear Strength, MPa 440
250
Tensile Strength: Ultimate (UTS), MPa 630
380
Tensile Strength: Yield (Proof), MPa 250
200

Thermal Properties

Latent Heat of Fusion, J/g 350
250
Maximum Temperature: Mechanical, °C 940
400
Melting Completion (Liquidus), °C 1370
1460
Melting Onset (Solidus), °C 1330
1420
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 14
50
Thermal Expansion, µm/m-K 16
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 19
2.1
Density, g/cm3 7.6
7.9
Embodied Carbon, kg CO2/kg material 3.6
1.5
Embodied Energy, MJ/kg 52
19
Embodied Water, L/kg 150
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
94
Resilience: Unit (Modulus of Resilience), kJ/m3 160
110
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 23
13
Strength to Weight: Bending, points 21
15
Thermal Diffusivity, mm2/s 3.7
13
Thermal Shock Resistance, points 15
12

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.2
Carbon (C), % 0 to 0.015
0 to 0.13
Chromium (Cr), % 16.5 to 18.5
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 58.7 to 65.8
97.5 to 99.98
Manganese (Mn), % 0 to 2.0
0 to 0.7
Molybdenum (Mo), % 0 to 0.2
0 to 0.080
Nickel (Ni), % 14 to 16
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 3.7 to 4.5
0 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020