MakeItFrom.com
Menu (ESC)

EN 1.4361 Stainless Steel vs. EN 1.8918 Steel

Both EN 1.4361 stainless steel and EN 1.8918 steel are iron alloys. They have 64% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4361 stainless steel and the bottom bar is EN 1.8918 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
190
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 43
19
Fatigue Strength, MPa 220
330
Impact Strength: V-Notched Charpy, J 90
88
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
73
Shear Strength, MPa 440
400
Tensile Strength: Ultimate (UTS), MPa 630
640
Tensile Strength: Yield (Proof), MPa 250
490

Thermal Properties

Latent Heat of Fusion, J/g 350
250
Maximum Temperature: Mechanical, °C 940
400
Melting Completion (Liquidus), °C 1370
1460
Melting Onset (Solidus), °C 1330
1420
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 14
46
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 19
2.5
Density, g/cm3 7.6
7.8
Embodied Carbon, kg CO2/kg material 3.6
1.7
Embodied Energy, MJ/kg 52
24
Embodied Water, L/kg 150
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
110
Resilience: Unit (Modulus of Resilience), kJ/m3 160
640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 23
23
Strength to Weight: Bending, points 21
21
Thermal Diffusivity, mm2/s 3.7
12
Thermal Shock Resistance, points 15
19

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.050
Carbon (C), % 0 to 0.015
0 to 0.2
Chromium (Cr), % 16.5 to 18.5
0 to 0.3
Copper (Cu), % 0
0 to 0.7
Iron (Fe), % 58.7 to 65.8
95.2 to 98.9
Manganese (Mn), % 0 to 2.0
1.1 to 1.7
Molybdenum (Mo), % 0 to 0.2
0 to 0.1
Nickel (Ni), % 14 to 16
0 to 0.8
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.1
0 to 0.025
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 3.7 to 4.5
0 to 0.6
Sulfur (S), % 0 to 0.010
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.2