MakeItFrom.com
Menu (ESC)

EN 1.4361 Stainless Steel vs. C42200 Brass

EN 1.4361 stainless steel belongs to the iron alloys classification, while C42200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4361 stainless steel and the bottom bar is C42200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 43
2.0 to 46
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
42
Shear Strength, MPa 440
210 to 350
Tensile Strength: Ultimate (UTS), MPa 630
300 to 610
Tensile Strength: Yield (Proof), MPa 250
100 to 570

Thermal Properties

Latent Heat of Fusion, J/g 350
200
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1370
1040
Melting Onset (Solidus), °C 1330
1020
Specific Heat Capacity, J/kg-K 490
380
Thermal Conductivity, W/m-K 14
130
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
31
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
32

Otherwise Unclassified Properties

Base Metal Price, % relative 19
29
Density, g/cm3 7.6
8.6
Embodied Carbon, kg CO2/kg material 3.6
2.7
Embodied Energy, MJ/kg 52
44
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 160
49 to 1460
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 23
9.5 to 19
Strength to Weight: Bending, points 21
11 to 18
Thermal Diffusivity, mm2/s 3.7
39
Thermal Shock Resistance, points 15
10 to 21

Alloy Composition

Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 16.5 to 18.5
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 58.7 to 65.8
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 14 to 16
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.025
0 to 0.35
Silicon (Si), % 3.7 to 4.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.8 to 1.4
Zinc (Zn), % 0
8.7 to 13.2
Residuals, % 0
0 to 0.5