MakeItFrom.com
Menu (ESC)

EN 1.4361 Stainless Steel vs. C46400 Brass

EN 1.4361 stainless steel belongs to the iron alloys classification, while C46400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4361 stainless steel and the bottom bar is C46400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 43
17 to 40
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 75
40
Shear Strength, MPa 440
270 to 310
Tensile Strength: Ultimate (UTS), MPa 630
400 to 500
Tensile Strength: Yield (Proof), MPa 250
160 to 320

Thermal Properties

Latent Heat of Fusion, J/g 350
170
Maximum Temperature: Mechanical, °C 940
120
Melting Completion (Liquidus), °C 1370
900
Melting Onset (Solidus), °C 1330
890
Specific Heat Capacity, J/kg-K 490
380
Thermal Conductivity, W/m-K 14
120
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
29

Otherwise Unclassified Properties

Base Metal Price, % relative 19
23
Density, g/cm3 7.6
8.0
Embodied Carbon, kg CO2/kg material 3.6
2.7
Embodied Energy, MJ/kg 52
47
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
76 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 160
120 to 500
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 23
14 to 17
Strength to Weight: Bending, points 21
15 to 17
Thermal Diffusivity, mm2/s 3.7
38
Thermal Shock Resistance, points 15
13 to 16

Alloy Composition

Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 16.5 to 18.5
0
Copper (Cu), % 0
59 to 62
Iron (Fe), % 58.7 to 65.8
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 14 to 16
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 3.7 to 4.5
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
36.3 to 40.5
Residuals, % 0
0 to 0.4