MakeItFrom.com
Menu (ESC)

EN 1.4361 Stainless Steel vs. S44635 Stainless Steel

Both EN 1.4361 stainless steel and S44635 stainless steel are iron alloys. They have 85% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4361 stainless steel and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
240
Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 43
23
Fatigue Strength, MPa 220
390
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 75
81
Shear Strength, MPa 440
450
Tensile Strength: Ultimate (UTS), MPa 630
710
Tensile Strength: Yield (Proof), MPa 250
580

Thermal Properties

Latent Heat of Fusion, J/g 350
300
Maximum Temperature: Corrosion, °C 410
610
Maximum Temperature: Mechanical, °C 940
1100
Melting Completion (Liquidus), °C 1370
1460
Melting Onset (Solidus), °C 1330
1420
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 14
16
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 19
22
Density, g/cm3 7.6
7.8
Embodied Carbon, kg CO2/kg material 3.6
4.4
Embodied Energy, MJ/kg 52
62
Embodied Water, L/kg 150
170

Common Calculations

PREN (Pitting Resistance) 19
39
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
150
Resilience: Unit (Modulus of Resilience), kJ/m3 160
810
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23
25
Strength to Weight: Bending, points 21
23
Thermal Diffusivity, mm2/s 3.7
4.4
Thermal Shock Resistance, points 15
23

Alloy Composition

Carbon (C), % 0 to 0.015
0 to 0.025
Chromium (Cr), % 16.5 to 18.5
24.5 to 26
Iron (Fe), % 58.7 to 65.8
61.5 to 68.5
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0 to 0.2
3.5 to 4.5
Nickel (Ni), % 14 to 16
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0 to 0.1
0 to 0.035
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 3.7 to 4.5
0 to 0.75
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8