MakeItFrom.com
Menu (ESC)

EN 1.4361 Stainless Steel vs. S44725 Stainless Steel

Both EN 1.4361 stainless steel and S44725 stainless steel are iron alloys. They have 80% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4361 stainless steel and the bottom bar is S44725 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 43
22
Fatigue Strength, MPa 220
210
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 75
81
Shear Strength, MPa 440
320
Tensile Strength: Ultimate (UTS), MPa 630
500
Tensile Strength: Yield (Proof), MPa 250
310

Thermal Properties

Latent Heat of Fusion, J/g 350
290
Maximum Temperature: Corrosion, °C 410
500
Maximum Temperature: Mechanical, °C 940
1100
Melting Completion (Liquidus), °C 1370
1450
Melting Onset (Solidus), °C 1330
1410
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 14
17
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 19
15
Density, g/cm3 7.6
7.7
Embodied Carbon, kg CO2/kg material 3.6
3.1
Embodied Energy, MJ/kg 52
44
Embodied Water, L/kg 150
170

Common Calculations

PREN (Pitting Resistance) 19
33
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
99
Resilience: Unit (Modulus of Resilience), kJ/m3 160
240
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 23
18
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 3.7
4.6
Thermal Shock Resistance, points 15
16

Alloy Composition

Carbon (C), % 0 to 0.015
0 to 0.015
Chromium (Cr), % 16.5 to 18.5
25 to 28.5
Iron (Fe), % 58.7 to 65.8
67.6 to 73.5
Manganese (Mn), % 0 to 2.0
0 to 0.4
Molybdenum (Mo), % 0 to 0.2
1.5 to 2.5
Nickel (Ni), % 14 to 16
0 to 0.3
Niobium (Nb), % 0
0 to 0.26
Nitrogen (N), % 0 to 0.1
0 to 0.018
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 3.7 to 4.5
0 to 0.040
Sulfur (S), % 0 to 0.010
0 to 0.020
Titanium (Ti), % 0
0 to 0.26