MakeItFrom.com
Menu (ESC)

EN 1.4362 Stainless Steel vs. 6016 Aluminum

EN 1.4362 stainless steel belongs to the iron alloys classification, while 6016 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4362 stainless steel and the bottom bar is 6016 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
55 to 80
Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 25
11 to 27
Fatigue Strength, MPa 320
68 to 89
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 470
130 to 170
Tensile Strength: Ultimate (UTS), MPa 730
200 to 280
Tensile Strength: Yield (Proof), MPa 460
110 to 210

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 1060
160
Melting Completion (Liquidus), °C 1420
660
Melting Onset (Solidus), °C 1380
610
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
190 to 210
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
48 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
160 to 180

Otherwise Unclassified Properties

Base Metal Price, % relative 14
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.9
8.2
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 160
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
29 to 47
Resilience: Unit (Modulus of Resilience), kJ/m3 530
82 to 340
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 26
21 to 29
Strength to Weight: Bending, points 23
29 to 35
Thermal Diffusivity, mm2/s 4.0
77 to 86
Thermal Shock Resistance, points 20
9.1 to 12

Alloy Composition

Aluminum (Al), % 0
96.4 to 98.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22 to 24.5
0 to 0.1
Copper (Cu), % 0.1 to 0.6
0 to 0.2
Iron (Fe), % 65.5 to 74.3
0 to 0.5
Magnesium (Mg), % 0
0.25 to 0.6
Manganese (Mn), % 0 to 2.0
0 to 0.2
Molybdenum (Mo), % 0.1 to 0.6
0
Nickel (Ni), % 3.5 to 5.5
0
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
1.0 to 1.5
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15