MakeItFrom.com
Menu (ESC)

EN 1.4362 Stainless Steel vs. 6060 Aluminum

EN 1.4362 stainless steel belongs to the iron alloys classification, while 6060 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4362 stainless steel and the bottom bar is 6060 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 25
9.0 to 16
Fatigue Strength, MPa 320
37 to 70
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 470
86 to 130
Tensile Strength: Ultimate (UTS), MPa 730
140 to 220
Tensile Strength: Yield (Proof), MPa 460
71 to 170

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 1060
160
Melting Completion (Liquidus), °C 1420
660
Melting Onset (Solidus), °C 1380
610
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
210
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
54
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
180

Otherwise Unclassified Properties

Base Metal Price, % relative 14
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.9
8.3
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 160
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
13 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 530
37 to 210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 26
14 to 23
Strength to Weight: Bending, points 23
22 to 30
Thermal Diffusivity, mm2/s 4.0
85
Thermal Shock Resistance, points 20
6.3 to 9.9

Alloy Composition

Aluminum (Al), % 0
97.9 to 99.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22 to 24.5
0 to 0.050
Copper (Cu), % 0.1 to 0.6
0 to 0.1
Iron (Fe), % 65.5 to 74.3
0.1 to 0.3
Magnesium (Mg), % 0
0.35 to 0.6
Manganese (Mn), % 0 to 2.0
0 to 0.1
Molybdenum (Mo), % 0.1 to 0.6
0
Nickel (Ni), % 3.5 to 5.5
0
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
0.3 to 0.6
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15