MakeItFrom.com
Menu (ESC)

EN 1.4362 Stainless Steel vs. AWS E409Nb

Both EN 1.4362 stainless steel and AWS E409Nb are iron alloys. They have 84% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4362 stainless steel and the bottom bar is AWS E409Nb.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 25
23
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
76
Tensile Strength: Ultimate (UTS), MPa 730
500
Tensile Strength: Yield (Proof), MPa 460
380

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
25
Thermal Expansion, µm/m-K 13
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 14
13
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.9
2.9
Embodied Energy, MJ/kg 41
42
Embodied Water, L/kg 160
100

Common Calculations

PREN (Pitting Resistance) 26
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
110
Resilience: Unit (Modulus of Resilience), kJ/m3 530
380
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 26
18
Strength to Weight: Bending, points 23
18
Thermal Diffusivity, mm2/s 4.0
6.8
Thermal Shock Resistance, points 20
14

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.12
Chromium (Cr), % 22 to 24.5
11 to 14
Copper (Cu), % 0.1 to 0.6
0 to 0.75
Iron (Fe), % 65.5 to 74.3
80.2 to 88.5
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 0.1 to 0.6
0 to 0.75
Nickel (Ni), % 3.5 to 5.5
0 to 0.6
Niobium (Nb), % 0
0.5 to 1.5
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030