EN 1.4362 Stainless Steel vs. SAE-AISI 1050 Steel
Both EN 1.4362 stainless steel and SAE-AISI 1050 steel are iron alloys. They have 71% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.
For each property being compared, the top bar is EN 1.4362 stainless steel and the bottom bar is SAE-AISI 1050 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 230 | |
200 to 220 |
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
190 |
Elongation at Break, % | 25 | |
11 to 17 |
Fatigue Strength, MPa | 320 | |
260 to 400 |
Poisson's Ratio | 0.27 | |
0.29 |
Shear Modulus, GPa | 79 | |
72 |
Shear Strength, MPa | 470 | |
430 to 470 |
Tensile Strength: Ultimate (UTS), MPa | 730 | |
690 to 790 |
Tensile Strength: Yield (Proof), MPa | 460 | |
390 to 650 |
Thermal Properties
Latent Heat of Fusion, J/g | 290 | |
250 |
Maximum Temperature: Mechanical, °C | 1060 | |
400 |
Melting Completion (Liquidus), °C | 1420 | |
1460 |
Melting Onset (Solidus), °C | 1380 | |
1420 |
Specific Heat Capacity, J/kg-K | 480 | |
470 |
Thermal Conductivity, W/m-K | 15 | |
51 |
Thermal Expansion, µm/m-K | 13 | |
12 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.2 | |
7.0 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.5 | |
8.1 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 14 | |
1.8 |
Density, g/cm3 | 7.7 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 2.9 | |
1.4 |
Embodied Energy, MJ/kg | 41 | |
18 |
Embodied Water, L/kg | 160 | |
46 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 160 | |
81 to 100 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 530 | |
400 to 1130 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 26 | |
25 to 28 |
Strength to Weight: Bending, points | 23 | |
22 to 24 |
Thermal Diffusivity, mm2/s | 4.0 | |
14 |
Thermal Shock Resistance, points | 20 | |
22 to 25 |
Alloy Composition
Carbon (C), % | 0 to 0.030 | |
0.48 to 0.55 |
Chromium (Cr), % | 22 to 24.5 | |
0 |
Copper (Cu), % | 0.1 to 0.6 | |
0 |
Iron (Fe), % | 65.5 to 74.3 | |
98.5 to 98.9 |
Manganese (Mn), % | 0 to 2.0 | |
0.6 to 0.9 |
Molybdenum (Mo), % | 0.1 to 0.6 | |
0 |
Nickel (Ni), % | 3.5 to 5.5 | |
0 |
Nitrogen (N), % | 0.050 to 0.2 | |
0 |
Phosphorus (P), % | 0 to 0.035 | |
0 to 0.040 |
Silicon (Si), % | 0 to 1.0 | |
0 |
Sulfur (S), % | 0 to 0.015 | |
0 to 0.050 |