MakeItFrom.com
Menu (ESC)

EN 1.4369 Stainless Steel vs. EN 1.4988 Stainless Steel

Both EN 1.4369 stainless steel and EN 1.4988 stainless steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4369 stainless steel and the bottom bar is EN 1.4988 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
34
Fatigue Strength, MPa 330
230
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 580
430
Tensile Strength: Ultimate (UTS), MPa 850
640
Tensile Strength: Yield (Proof), MPa 390
290

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 420
520
Maximum Temperature: Mechanical, °C 940
920
Melting Completion (Liquidus), °C 1400
1450
Melting Onset (Solidus), °C 1360
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 14
23
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.0
6.0
Embodied Energy, MJ/kg 43
89
Embodied Water, L/kg 150
150

Common Calculations

PREN (Pitting Resistance) 23
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
180
Resilience: Unit (Modulus of Resilience), kJ/m3 380
210
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 31
23
Strength to Weight: Bending, points 26
21
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 18
14

Alloy Composition

Carbon (C), % 0.070 to 0.15
0.040 to 0.1
Chromium (Cr), % 17.5 to 19.5
15.5 to 17.5
Iron (Fe), % 63 to 70.2
62.1 to 69.5
Manganese (Mn), % 5.0 to 7.5
0 to 1.5
Molybdenum (Mo), % 0
1.1 to 1.5
Nickel (Ni), % 6.5 to 8.5
12.5 to 14.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0.2 to 0.3
0.060 to 0.14
Phosphorus (P), % 0 to 0.030
0 to 0.035
Silicon (Si), % 0.5 to 1.0
0.3 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.015
Vanadium (V), % 0
0.6 to 0.85