MakeItFrom.com
Menu (ESC)

EN 1.4369 Stainless Steel vs. S17400 Stainless Steel

Both EN 1.4369 stainless steel and S17400 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4369 stainless steel and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
280 to 440
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
11 to 21
Fatigue Strength, MPa 330
380 to 670
Impact Strength: V-Notched Charpy, J 91
7.6 to 86
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
75
Shear Strength, MPa 580
570 to 830
Tensile Strength: Ultimate (UTS), MPa 850
910 to 1390
Tensile Strength: Yield (Proof), MPa 390
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 420
450
Maximum Temperature: Mechanical, °C 940
850
Melting Completion (Liquidus), °C 1400
1440
Melting Onset (Solidus), °C 1360
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 14
14
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.0
2.7
Embodied Energy, MJ/kg 43
39
Embodied Water, L/kg 150
130

Common Calculations

PREN (Pitting Resistance) 23
16
Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 380
880 to 4060
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 31
32 to 49
Strength to Weight: Bending, points 26
27 to 35
Thermal Diffusivity, mm2/s 4.0
4.5
Thermal Shock Resistance, points 18
30 to 46

Alloy Composition

Carbon (C), % 0.070 to 0.15
0 to 0.070
Chromium (Cr), % 17.5 to 19.5
15 to 17
Copper (Cu), % 0
3.0 to 5.0
Iron (Fe), % 63 to 70.2
70.4 to 78.9
Manganese (Mn), % 5.0 to 7.5
0 to 1.0
Nickel (Ni), % 6.5 to 8.5
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0.5 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030