MakeItFrom.com
Menu (ESC)

EN 1.4369 Stainless Steel vs. S40920 Stainless Steel

Both EN 1.4369 stainless steel and S40920 stainless steel are iron alloys. They have 79% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4369 stainless steel and the bottom bar is S40920 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
150
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
22
Fatigue Strength, MPa 330
130
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
75
Shear Strength, MPa 580
270
Tensile Strength: Ultimate (UTS), MPa 850
430
Tensile Strength: Yield (Proof), MPa 390
190

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 420
450
Maximum Temperature: Mechanical, °C 940
710
Melting Completion (Liquidus), °C 1400
1450
Melting Onset (Solidus), °C 1360
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
26
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 14
6.5
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.0
Embodied Energy, MJ/kg 43
28
Embodied Water, L/kg 150
94

Common Calculations

PREN (Pitting Resistance) 23
11
Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
78
Resilience: Unit (Modulus of Resilience), kJ/m3 380
97
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 31
15
Strength to Weight: Bending, points 26
16
Thermal Diffusivity, mm2/s 4.0
6.9
Thermal Shock Resistance, points 18
15

Alloy Composition

Carbon (C), % 0.070 to 0.15
0 to 0.030
Chromium (Cr), % 17.5 to 19.5
10.5 to 11.7
Iron (Fe), % 63 to 70.2
85.1 to 89.4
Manganese (Mn), % 5.0 to 7.5
0 to 1.0
Nickel (Ni), % 6.5 to 8.5
0 to 0.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0.2 to 0.3
0 to 0.030
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0.5 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0
0.15 to 0.5