MakeItFrom.com
Menu (ESC)

EN 1.4371 Stainless Steel vs. ASTM Grade HG10 MNN Steel

Both EN 1.4371 stainless steel and ASTM grade HG10 MNN steel are iron alloys. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4371 stainless steel and the bottom bar is ASTM grade HG10 MNN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220 to 230
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 45 to 51
23
Fatigue Strength, MPa 290 to 340
170
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Tensile Strength: Ultimate (UTS), MPa 740 to 750
590
Tensile Strength: Yield (Proof), MPa 320 to 340
250

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 410
500
Maximum Temperature: Mechanical, °C 880
990
Melting Completion (Liquidus), °C 1410
1420
Melting Onset (Solidus), °C 1370
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 12
21
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
4.0
Embodied Energy, MJ/kg 38
58
Embodied Water, L/kg 140
160

Common Calculations

PREN (Pitting Resistance) 20
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 270 to 310
110
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 300
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
21
Strength to Weight: Bending, points 24
20
Thermal Diffusivity, mm2/s 4.0
3.9
Thermal Shock Resistance, points 16
13

Alloy Composition

Carbon (C), % 0 to 0.030
0.070 to 0.11
Chromium (Cr), % 16 to 17.5
18.5 to 20.5
Copper (Cu), % 0 to 1.0
0 to 0.5
Iron (Fe), % 66.7 to 74.4
57.9 to 66.5
Manganese (Mn), % 6.0 to 8.0
3.0 to 5.0
Molybdenum (Mo), % 0
0.25 to 0.45
Nickel (Ni), % 3.5 to 5.5
11.5 to 13.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0.15 to 0.25
0.2 to 0.3
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.7
Sulfur (S), % 0 to 0.015
0 to 0.030