MakeItFrom.com
Menu (ESC)

EN 1.4371 Stainless Steel vs. Grade 12 Titanium

EN 1.4371 stainless steel belongs to the iron alloys classification, while grade 12 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4371 stainless steel and the bottom bar is grade 12 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 220 to 230
170
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 45 to 51
21
Fatigue Strength, MPa 290 to 340
280
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
39
Shear Strength, MPa 520 to 540
330
Tensile Strength: Ultimate (UTS), MPa 740 to 750
530
Tensile Strength: Yield (Proof), MPa 320 to 340
410

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 880
320
Melting Completion (Liquidus), °C 1410
1660
Melting Onset (Solidus), °C 1370
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 17
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
6.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
37
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.6
31
Embodied Energy, MJ/kg 38
500
Embodied Water, L/kg 140
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270 to 310
110
Resilience: Unit (Modulus of Resilience), kJ/m3 250 to 300
770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 27
32
Strength to Weight: Bending, points 24
32
Thermal Diffusivity, mm2/s 4.0
8.5
Thermal Shock Resistance, points 16
37

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 16 to 17.5
0
Copper (Cu), % 0 to 1.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 66.7 to 74.4
0 to 0.3
Manganese (Mn), % 6.0 to 8.0
0
Molybdenum (Mo), % 0
0.2 to 0.4
Nickel (Ni), % 3.5 to 5.5
0.6 to 0.9
Nitrogen (N), % 0.15 to 0.25
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
97.6 to 99.2
Residuals, % 0
0 to 0.4