MakeItFrom.com
Menu (ESC)

EN 1.4372 Stainless Steel vs. C92800 Bronze

EN 1.4372 stainless steel belongs to the iron alloys classification, while C92800 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.4372 stainless steel and the bottom bar is C92800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 47
1.0
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 77
37
Tensile Strength: Ultimate (UTS), MPa 790
280
Tensile Strength: Yield (Proof), MPa 350
210

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 880
140
Melting Completion (Liquidus), °C 1410
960
Melting Onset (Solidus), °C 1370
820
Specific Heat Capacity, J/kg-K 480
350
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
36
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 2.6
4.1
Embodied Energy, MJ/kg 38
67
Embodied Water, L/kg 140
430

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 310
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 320
210
Stiffness to Weight: Axial, points 14
6.4
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 29
8.8
Strength to Weight: Bending, points 25
11
Thermal Shock Resistance, points 17
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
78 to 82
Iron (Fe), % 67.5 to 75
0 to 0.2
Lead (Pb), % 0
4.0 to 6.0
Manganese (Mn), % 5.5 to 7.5
0
Nickel (Ni), % 3.5 to 5.5
0 to 0.8
Nitrogen (N), % 0.050 to 0.25
0
Phosphorus (P), % 0 to 0.045
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
15 to 17
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.7