MakeItFrom.com
Menu (ESC)

EN 1.4372 Stainless Steel vs. C93700 Bronze

EN 1.4372 stainless steel belongs to the iron alloys classification, while C93700 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4372 stainless steel and the bottom bar is C93700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
99
Elongation at Break, % 47
20
Fatigue Strength, MPa 330
90
Impact Strength: V-Notched Charpy, J 90
15
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 77
37
Tensile Strength: Ultimate (UTS), MPa 790
240
Tensile Strength: Yield (Proof), MPa 350
130

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 880
140
Melting Completion (Liquidus), °C 1410
930
Melting Onset (Solidus), °C 1370
760
Specific Heat Capacity, J/kg-K 480
350
Thermal Conductivity, W/m-K 15
47
Thermal Expansion, µm/m-K 17
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
10

Otherwise Unclassified Properties

Base Metal Price, % relative 12
33
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.6
3.5
Embodied Energy, MJ/kg 38
57
Embodied Water, L/kg 140
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 310
40
Resilience: Unit (Modulus of Resilience), kJ/m3 320
79
Stiffness to Weight: Axial, points 14
6.2
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 29
7.5
Strength to Weight: Bending, points 25
9.6
Thermal Diffusivity, mm2/s 4.0
15
Thermal Shock Resistance, points 17
9.4

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 16 to 18
0
Copper (Cu), % 0
78 to 82
Iron (Fe), % 67.5 to 75
0 to 0.15
Lead (Pb), % 0
8.0 to 11
Manganese (Mn), % 5.5 to 7.5
0
Nickel (Ni), % 3.5 to 5.5
0 to 1.0
Nitrogen (N), % 0.050 to 0.25
0
Phosphorus (P), % 0 to 0.045
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.080
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0