MakeItFrom.com
Menu (ESC)

EN 1.4374 Stainless Steel vs. S33425 Stainless Steel

Both EN 1.4374 stainless steel and S33425 stainless steel are iron alloys. They have 77% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4374 stainless steel and the bottom bar is S33425 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
45
Fatigue Strength, MPa 340
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
79
Shear Strength, MPa 550
400
Tensile Strength: Ultimate (UTS), MPa 800
580
Tensile Strength: Yield (Proof), MPa 400
230

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 410
500
Maximum Temperature: Mechanical, °C 920
1100
Melting Completion (Liquidus), °C 1400
1430
Melting Onset (Solidus), °C 1360
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
14
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 14
27
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.9
5.1
Embodied Energy, MJ/kg 42
71
Embodied Water, L/kg 150
190

Common Calculations

PREN (Pitting Resistance) 23
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
210
Resilience: Unit (Modulus of Resilience), kJ/m3 400
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 29
20
Strength to Weight: Bending, points 25
19
Thermal Diffusivity, mm2/s 4.0
3.7
Thermal Shock Resistance, points 17
13

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0.050 to 0.1
0 to 0.080
Chromium (Cr), % 17.5 to 18.5
21 to 23
Copper (Cu), % 0 to 0.4
0
Iron (Fe), % 63.5 to 67.9
47.2 to 56.7
Manganese (Mn), % 9.0 to 10
0 to 1.5
Molybdenum (Mo), % 0 to 0.5
2.0 to 3.0
Nickel (Ni), % 5.0 to 6.0
20 to 23
Nitrogen (N), % 0.25 to 0.32
0
Phosphorus (P), % 0 to 0.035
0 to 0.045
Silicon (Si), % 0.3 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0
0.15 to 0.6