MakeItFrom.com
Menu (ESC)

EN 1.4374 Stainless Steel vs. S42300 Stainless Steel

Both EN 1.4374 stainless steel and S42300 stainless steel are iron alloys. They have 79% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4374 stainless steel and the bottom bar is S42300 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
330
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 40
9.1
Fatigue Strength, MPa 340
440
Impact Strength: V-Notched Charpy, J 90
13
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
77
Shear Strength, MPa 550
650
Tensile Strength: Ultimate (UTS), MPa 800
1100
Tensile Strength: Yield (Proof), MPa 400
850

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 410
380
Maximum Temperature: Mechanical, °C 920
750
Melting Completion (Liquidus), °C 1400
1470
Melting Onset (Solidus), °C 1360
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
4.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
5.2

Otherwise Unclassified Properties

Base Metal Price, % relative 14
9.5
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.9
3.2
Embodied Energy, MJ/kg 42
44
Embodied Water, L/kg 150
110

Common Calculations

PREN (Pitting Resistance) 23
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
93
Resilience: Unit (Modulus of Resilience), kJ/m3 400
1840
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 29
39
Strength to Weight: Bending, points 25
30
Thermal Diffusivity, mm2/s 4.0
6.8
Thermal Shock Resistance, points 17
40

Alloy Composition

Carbon (C), % 0.050 to 0.1
0.27 to 0.32
Chromium (Cr), % 17.5 to 18.5
11 to 12
Copper (Cu), % 0 to 0.4
0
Iron (Fe), % 63.5 to 67.9
82 to 85.1
Manganese (Mn), % 9.0 to 10
1.0 to 1.4
Molybdenum (Mo), % 0 to 0.5
2.5 to 3.0
Nickel (Ni), % 5.0 to 6.0
0 to 0.5
Nitrogen (N), % 0.25 to 0.32
0
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0.3 to 0.6
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.025
Vanadium (V), % 0
0.2 to 0.3