MakeItFrom.com
Menu (ESC)

EN 1.4376 Stainless Steel vs. EN 1.4580 Stainless Steel

Both EN 1.4376 stainless steel and EN 1.4580 stainless steel are iron alloys. Both are furnished in the solution annealed (AT) condition. They have 89% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4376 stainless steel and the bottom bar is EN 1.4580 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
200
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 45
40
Fatigue Strength, MPa 420
210
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Shear Strength, MPa 530
430
Tensile Strength: Ultimate (UTS), MPa 750
620
Tensile Strength: Yield (Proof), MPa 450
250

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 420
480
Maximum Temperature: Mechanical, °C 930
950
Melting Completion (Liquidus), °C 1410
1450
Melting Onset (Solidus), °C 1370
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 12
22
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.6
4.3
Embodied Energy, MJ/kg 37
60
Embodied Water, L/kg 140
150

Common Calculations

PREN (Pitting Resistance) 21
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
200
Resilience: Unit (Modulus of Resilience), kJ/m3 520
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
22
Strength to Weight: Bending, points 24
21
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 17
14

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.080
Chromium (Cr), % 17 to 20.5
16.5 to 18.5
Iron (Fe), % 65.5 to 76
61.4 to 71
Manganese (Mn), % 5.0 to 8.0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 2.0 to 4.5
10.5 to 13.5
Niobium (Nb), % 0
0 to 1.0
Nitrogen (N), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015