MakeItFrom.com
Menu (ESC)

EN 1.4376 Stainless Steel vs. C95700 Bronze

EN 1.4376 stainless steel belongs to the iron alloys classification, while C95700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4376 stainless steel and the bottom bar is C95700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
130
Elongation at Break, % 45
23
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
47
Tensile Strength: Ultimate (UTS), MPa 750
680
Tensile Strength: Yield (Proof), MPa 450
310

Thermal Properties

Latent Heat of Fusion, J/g 290
230
Maximum Temperature: Mechanical, °C 930
220
Melting Completion (Liquidus), °C 1410
990
Melting Onset (Solidus), °C 1370
950
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
26
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.6
3.3
Embodied Energy, MJ/kg 37
54
Embodied Water, L/kg 140
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
130
Resilience: Unit (Modulus of Resilience), kJ/m3 520
390
Stiffness to Weight: Axial, points 14
8.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 27
23
Strength to Weight: Bending, points 24
21
Thermal Diffusivity, mm2/s 4.0
3.3
Thermal Shock Resistance, points 17
21

Alloy Composition

Aluminum (Al), % 0
7.0 to 8.5
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 17 to 20.5
0
Copper (Cu), % 0
71 to 78.5
Iron (Fe), % 65.5 to 76
2.0 to 4.0
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 5.0 to 8.0
11 to 14
Nickel (Ni), % 2.0 to 4.5
1.5 to 3.0
Nitrogen (N), % 0 to 0.3
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Residuals, % 0
0 to 0.5