MakeItFrom.com
Menu (ESC)

EN 1.4378 Stainless Steel vs. 2095 Aluminum

EN 1.4378 stainless steel belongs to the iron alloys classification, while 2095 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4378 stainless steel and the bottom bar is 2095 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 14 to 34
8.5
Fatigue Strength, MPa 340 to 550
200
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 510 to 680
410
Tensile Strength: Ultimate (UTS), MPa 760 to 1130
700
Tensile Strength: Yield (Proof), MPa 430 to 970
610

Thermal Properties

Latent Heat of Fusion, J/g 290
390
Maximum Temperature: Mechanical, °C 910
210
Melting Completion (Liquidus), °C 1390
660
Melting Onset (Solidus), °C 1350
540
Specific Heat Capacity, J/kg-K 480
910
Thermal Expansion, µm/m-K 17
23

Otherwise Unclassified Properties

Base Metal Price, % relative 12
31
Density, g/cm3 7.6
3.0
Embodied Carbon, kg CO2/kg material 2.7
8.6
Embodied Energy, MJ/kg 39
160
Embodied Water, L/kg 150
1470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 220
57
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 2370
2640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 28 to 41
65
Strength to Weight: Bending, points 24 to 31
59
Thermal Shock Resistance, points 16 to 23
31

Alloy Composition

Aluminum (Al), % 0
91.3 to 94.9
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
3.9 to 4.6
Iron (Fe), % 61.2 to 69
0 to 0.15
Lithium (Li), % 0
0.7 to 1.5
Magnesium (Mg), % 0
0.25 to 0.8
Manganese (Mn), % 11.5 to 14.5
0 to 0.25
Nickel (Ni), % 2.3 to 3.7
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0 to 0.12
Silver (Ag), % 0
0.25 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.18
Residuals, % 0
0 to 0.15