MakeItFrom.com
Menu (ESC)

EN 1.4378 Stainless Steel vs. 6005A Aluminum

EN 1.4378 stainless steel belongs to the iron alloys classification, while 6005A aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4378 stainless steel and the bottom bar is 6005A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 14 to 34
8.6 to 17
Fatigue Strength, MPa 340 to 550
55 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 510 to 680
120 to 180
Tensile Strength: Ultimate (UTS), MPa 760 to 1130
190 to 300
Tensile Strength: Yield (Proof), MPa 430 to 970
100 to 270

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1390
650
Melting Onset (Solidus), °C 1350
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 17
23

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 2.7
8.3
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 220
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 2370
76 to 530
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 28 to 41
20 to 30
Strength to Weight: Bending, points 24 to 31
27 to 36
Thermal Shock Resistance, points 16 to 23
8.6 to 13

Alloy Composition

Aluminum (Al), % 0
96.5 to 99.1
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 19
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 61.2 to 69
0 to 0.35
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 11.5 to 14.5
0 to 0.5
Nickel (Ni), % 2.3 to 3.7
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0.5 to 0.9
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15