MakeItFrom.com
Menu (ESC)

EN 1.4378 Stainless Steel vs. A360.0 Aluminum

EN 1.4378 stainless steel belongs to the iron alloys classification, while A360.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4378 stainless steel and the bottom bar is A360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 340
75
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 14 to 34
1.6 to 5.0
Fatigue Strength, MPa 340 to 550
82 to 150
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
27
Shear Strength, MPa 510 to 680
180
Tensile Strength: Ultimate (UTS), MPa 760 to 1130
180 to 320
Tensile Strength: Yield (Proof), MPa 430 to 970
170 to 260

Thermal Properties

Latent Heat of Fusion, J/g 290
530
Maximum Temperature: Mechanical, °C 910
170
Melting Completion (Liquidus), °C 1390
680
Melting Onset (Solidus), °C 1350
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 17
21

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 7.6
2.6
Embodied Carbon, kg CO2/kg material 2.7
7.8
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 150
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 220
4.6 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 2370
190 to 470
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 28 to 41
19 to 34
Strength to Weight: Bending, points 24 to 31
27 to 39
Thermal Shock Resistance, points 16 to 23
8.5 to 15

Alloy Composition

Aluminum (Al), % 0
85.8 to 90.6
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 61.2 to 69
0 to 1.3
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 11.5 to 14.5
0 to 0.35
Nickel (Ni), % 2.3 to 3.7
0 to 0.5
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
9.0 to 10
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25