MakeItFrom.com
Menu (ESC)

EN 1.4378 Stainless Steel vs. AWS ER80S-B3L

Both EN 1.4378 stainless steel and AWS ER80S-B3L are iron alloys. They have 69% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.4378 stainless steel and the bottom bar is AWS ER80S-B3L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 14 to 34
19
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
74
Tensile Strength: Ultimate (UTS), MPa 760 to 1130
630
Tensile Strength: Yield (Proof), MPa 430 to 970
530

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Melting Completion (Liquidus), °C 1390
1460
Melting Onset (Solidus), °C 1350
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 17
13

Otherwise Unclassified Properties

Base Metal Price, % relative 12
4.1
Density, g/cm3 7.6
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.8
Embodied Energy, MJ/kg 39
23
Embodied Water, L/kg 150
60

Common Calculations

PREN (Pitting Resistance) 23
6.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 220
120
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 2370
730
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 28 to 41
22
Strength to Weight: Bending, points 24 to 31
21
Thermal Shock Resistance, points 16 to 23
18

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.050
Chromium (Cr), % 17 to 19
2.3 to 2.7
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 61.2 to 69
93.6 to 96
Manganese (Mn), % 11.5 to 14.5
0.4 to 0.7
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 2.3 to 3.7
0 to 0.2
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.060
0 to 0.025
Silicon (Si), % 0 to 1.0
0.4 to 0.7
Sulfur (S), % 0 to 0.030
0 to 0.025
Residuals, % 0
0 to 0.5