MakeItFrom.com
Menu (ESC)

EN 1.4378 Stainless Steel vs. Grade 18 Titanium

EN 1.4378 stainless steel belongs to the iron alloys classification, while grade 18 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.4378 stainless steel and the bottom bar is grade 18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14 to 34
11 to 17
Fatigue Strength, MPa 340 to 550
330 to 480
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Shear Strength, MPa 510 to 680
420 to 590
Tensile Strength: Ultimate (UTS), MPa 760 to 1130
690 to 980
Tensile Strength: Yield (Proof), MPa 430 to 970
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 910
330
Melting Completion (Liquidus), °C 1390
1640
Melting Onset (Solidus), °C 1350
1590
Specific Heat Capacity, J/kg-K 480
550
Thermal Expansion, µm/m-K 17
9.9

Otherwise Unclassified Properties

Density, g/cm3 7.6
4.5
Embodied Carbon, kg CO2/kg material 2.7
41
Embodied Energy, MJ/kg 39
670
Embodied Water, L/kg 150
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 220
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 2370
1380 to 3110
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 28 to 41
43 to 61
Strength to Weight: Bending, points 24 to 31
39 to 49
Thermal Shock Resistance, points 16 to 23
47 to 67

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 17 to 19
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 61.2 to 69
0 to 0.25
Manganese (Mn), % 11.5 to 14.5
0
Nickel (Ni), % 2.3 to 3.7
0
Nitrogen (N), % 0.2 to 0.4
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4