MakeItFrom.com
Menu (ESC)

EN 1.4378 Stainless Steel vs. Grade 6 Titanium

EN 1.4378 stainless steel belongs to the iron alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.4378 stainless steel and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 14 to 34
11
Fatigue Strength, MPa 340 to 550
290
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
39
Shear Strength, MPa 510 to 680
530
Tensile Strength: Ultimate (UTS), MPa 760 to 1130
890
Tensile Strength: Yield (Proof), MPa 430 to 970
840

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 910
310
Melting Completion (Liquidus), °C 1390
1580
Melting Onset (Solidus), °C 1350
1530
Specific Heat Capacity, J/kg-K 480
550
Thermal Expansion, µm/m-K 17
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 12
36
Density, g/cm3 7.6
4.5
Embodied Carbon, kg CO2/kg material 2.7
30
Embodied Energy, MJ/kg 39
480
Embodied Water, L/kg 150
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 220
92
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 2370
3390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 28 to 41
55
Strength to Weight: Bending, points 24 to 31
46
Thermal Shock Resistance, points 16 to 23
65

Alloy Composition

Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 17 to 19
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 61.2 to 69
0 to 0.5
Manganese (Mn), % 11.5 to 14.5
0
Nickel (Ni), % 2.3 to 3.7
0
Nitrogen (N), % 0.2 to 0.4
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0
89.8 to 94
Residuals, % 0
0 to 0.4