MakeItFrom.com
Menu (ESC)

EN 1.4378 Stainless Steel vs. C72900 Copper-nickel

EN 1.4378 stainless steel belongs to the iron alloys classification, while C72900 copper-nickel belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.4378 stainless steel and the bottom bar is C72900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 14 to 34
6.0 to 20
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
45
Shear Strength, MPa 510 to 680
540 to 630
Tensile Strength: Ultimate (UTS), MPa 760 to 1130
870 to 1080
Tensile Strength: Yield (Proof), MPa 430 to 970
700 to 920

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 910
210
Melting Completion (Liquidus), °C 1390
1120
Melting Onset (Solidus), °C 1350
950
Specific Heat Capacity, J/kg-K 480
380
Thermal Expansion, µm/m-K 17
17

Otherwise Unclassified Properties

Base Metal Price, % relative 12
39
Density, g/cm3 7.6
8.8
Embodied Carbon, kg CO2/kg material 2.7
4.6
Embodied Energy, MJ/kg 39
72
Embodied Water, L/kg 150
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 220
49 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 2370
2030 to 3490
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28 to 41
27 to 34
Strength to Weight: Bending, points 24 to 31
23 to 27
Thermal Shock Resistance, points 16 to 23
31 to 38

Alloy Composition

Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0
74.1 to 78
Iron (Fe), % 61.2 to 69
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 11.5 to 14.5
0 to 0.3
Nickel (Ni), % 2.3 to 3.7
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3