MakeItFrom.com
Menu (ESC)

EN 1.4378 Stainless Steel vs. N07773 Nickel

EN 1.4378 stainless steel belongs to the iron alloys classification, while N07773 nickel belongs to the nickel alloys. They have a modest 38% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4378 stainless steel and the bottom bar is N07773 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 14 to 34
40
Fatigue Strength, MPa 340 to 550
220
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
77
Shear Strength, MPa 510 to 680
480
Tensile Strength: Ultimate (UTS), MPa 760 to 1130
710
Tensile Strength: Yield (Proof), MPa 430 to 970
270

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Maximum Temperature: Mechanical, °C 910
990
Melting Completion (Liquidus), °C 1390
1510
Melting Onset (Solidus), °C 1350
1460
Specific Heat Capacity, J/kg-K 480
450
Thermal Expansion, µm/m-K 17
13

Otherwise Unclassified Properties

Base Metal Price, % relative 12
75
Density, g/cm3 7.6
8.5
Embodied Carbon, kg CO2/kg material 2.7
13
Embodied Energy, MJ/kg 39
180
Embodied Water, L/kg 150
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 220
220
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 2370
180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 28 to 41
23
Strength to Weight: Bending, points 24 to 31
21
Thermal Shock Resistance, points 16 to 23
20

Alloy Composition

Aluminum (Al), % 0
0 to 2.0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 17 to 19
18 to 27
Iron (Fe), % 61.2 to 69
0 to 32
Manganese (Mn), % 11.5 to 14.5
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 5.5
Nickel (Ni), % 2.3 to 3.7
45 to 60
Niobium (Nb), % 0
2.5 to 6.0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.060
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 2.0
Tungsten (W), % 0
0 to 6.0