MakeItFrom.com
Menu (ESC)

EN 1.4401 Stainless Steel vs. EN 1.4941 Stainless Steel

Both EN 1.4401 stainless steel and EN 1.4941 stainless steel are iron alloys. They have a very high 97% of their average alloy composition in common.

For each property being compared, the top bar is EN 1.4401 stainless steel and the bottom bar is EN 1.4941 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190 to 270
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 14 to 40
39
Fatigue Strength, MPa 200 to 320
180
Impact Strength: V-Notched Charpy, J 91 to 94
98
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
77
Shear Strength, MPa 410 to 550
400
Tensile Strength: Ultimate (UTS), MPa 600 to 900
590
Tensile Strength: Yield (Proof), MPa 230 to 570
210

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 410
520
Maximum Temperature: Mechanical, °C 950
940
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
16
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 19
16
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.8
3.3
Embodied Energy, MJ/kg 52
47
Embodied Water, L/kg 150
140

Common Calculations

PREN (Pitting Resistance) 26
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
180
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 800
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 32
21
Strength to Weight: Bending, points 20 to 26
20
Thermal Diffusivity, mm2/s 4.0
4.3
Thermal Shock Resistance, points 13 to 20
13

Alloy Composition

Boron (B), % 0
0.0015 to 0.0050
Carbon (C), % 0 to 0.070
0.040 to 0.080
Chromium (Cr), % 16.5 to 18.5
17 to 19
Iron (Fe), % 62.8 to 71.5
65.1 to 73.6
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 10 to 13
9.0 to 12
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0
0.4 to 0.8