MakeItFrom.com
Menu (ESC)

EN 1.4401 Stainless Steel vs. G-CoCr28 Cobalt

EN 1.4401 stainless steel belongs to the iron alloys classification, while G-CoCr28 cobalt belongs to the cobalt alloys. They have a modest 38% of their average alloy composition in common, which, by itself, doesn't mean much. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4401 stainless steel and the bottom bar is G-CoCr28 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 14 to 40
6.7
Fatigue Strength, MPa 200 to 320
130
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
83
Tensile Strength: Ultimate (UTS), MPa 600 to 900
560
Tensile Strength: Yield (Proof), MPa 230 to 570
260

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Maximum Temperature: Mechanical, °C 950
1200
Melting Completion (Liquidus), °C 1440
1330
Melting Onset (Solidus), °C 1400
1270
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
8.5
Thermal Expansion, µm/m-K 16
14

Otherwise Unclassified Properties

Base Metal Price, % relative 19
100
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 3.8
6.2
Embodied Energy, MJ/kg 52
84
Embodied Water, L/kg 150
440

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 190
31
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 800
160
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 21 to 32
19
Strength to Weight: Bending, points 20 to 26
19
Thermal Diffusivity, mm2/s 4.0
2.2
Thermal Shock Resistance, points 13 to 20
14

Alloy Composition

Carbon (C), % 0 to 0.070
0.050 to 0.25
Chromium (Cr), % 16.5 to 18.5
27 to 30
Cobalt (Co), % 0
48 to 52
Iron (Fe), % 62.8 to 71.5
9.7 to 24.5
Manganese (Mn), % 0 to 2.0
0 to 1.5
Molybdenum (Mo), % 2.0 to 2.5
0 to 0.5
Nickel (Ni), % 10 to 13
0 to 4.0
Niobium (Nb), % 0
0 to 0.5
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0.5 to 1.5
Sulfur (S), % 0 to 0.015
0 to 0.030