MakeItFrom.com
Menu (ESC)

EN 1.4404 Stainless Steel vs. EN 2.4669 Nickel

EN 1.4404 stainless steel belongs to the iron alloys classification, while EN 2.4669 nickel belongs to the nickel alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4404 stainless steel and the bottom bar is EN 2.4669 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 14 to 43
16
Fatigue Strength, MPa 220 to 320
390
Impact Strength: V-Notched Charpy, J 91 to 93
25
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 420 to 550
680
Tensile Strength: Ultimate (UTS), MPa 600 to 900
1110
Tensile Strength: Yield (Proof), MPa 240 to 570
720

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Maximum Temperature: Mechanical, °C 950
960
Melting Completion (Liquidus), °C 1440
1380
Melting Onset (Solidus), °C 1400
1330
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 19
60
Density, g/cm3 7.9
8.4
Embodied Carbon, kg CO2/kg material 3.8
10
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 150
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 210
160
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 800
1380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 21 to 32
37
Strength to Weight: Bending, points 20 to 26
28
Thermal Diffusivity, mm2/s 4.0
3.1
Thermal Shock Resistance, points 13 to 20
33

Alloy Composition

Aluminum (Al), % 0
0.4 to 1.0
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 16.5 to 18.5
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 62.8 to 71.5
5.0 to 9.0
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 10 to 13
65.9 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0
2.3 to 2.8