MakeItFrom.com
Menu (ESC)

EN 1.4404 Stainless Steel vs. C96700 Copper

EN 1.4404 stainless steel belongs to the iron alloys classification, while C96700 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.4404 stainless steel and the bottom bar is C96700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 14 to 43
10
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
53
Tensile Strength: Ultimate (UTS), MPa 600 to 900
1210
Tensile Strength: Yield (Proof), MPa 240 to 570
550

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 950
310
Melting Completion (Liquidus), °C 1440
1170
Melting Onset (Solidus), °C 1400
1110
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 15
30
Thermal Expansion, µm/m-K 16
15

Otherwise Unclassified Properties

Base Metal Price, % relative 19
90
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 3.8
9.5
Embodied Energy, MJ/kg 52
140
Embodied Water, L/kg 150
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 210
99
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 800
1080
Stiffness to Weight: Axial, points 14
8.9
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21 to 32
38
Strength to Weight: Bending, points 20 to 26
29
Thermal Diffusivity, mm2/s 4.0
8.5
Thermal Shock Resistance, points 13 to 20
40

Alloy Composition

Beryllium (Be), % 0
1.1 to 1.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16.5 to 18.5
0
Copper (Cu), % 0
62.4 to 68.8
Iron (Fe), % 62.8 to 71.5
0.4 to 1.0
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 2.0
0.4 to 1.0
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 10 to 13
29 to 33
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0.15 to 0.35
Zirconium (Zr), % 0
0.15 to 0.35
Residuals, % 0
0 to 0.5