MakeItFrom.com
Menu (ESC)

EN 1.4404 Stainless Steel vs. C96900 Copper-nickel

EN 1.4404 stainless steel belongs to the iron alloys classification, while C96900 copper-nickel belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.4404 stainless steel and the bottom bar is C96900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 14 to 43
4.5
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
45
Tensile Strength: Ultimate (UTS), MPa 600 to 900
850
Tensile Strength: Yield (Proof), MPa 240 to 570
830

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 950
210
Melting Completion (Liquidus), °C 1440
1060
Melting Onset (Solidus), °C 1400
960
Specific Heat Capacity, J/kg-K 470
380
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 19
39
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 3.8
4.6
Embodied Energy, MJ/kg 52
72
Embodied Water, L/kg 150
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 210
38
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 800
2820
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21 to 32
27
Strength to Weight: Bending, points 20 to 26
23
Thermal Shock Resistance, points 13 to 20
30

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16.5 to 18.5
0
Copper (Cu), % 0
73.6 to 78
Iron (Fe), % 62.8 to 71.5
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 2.0
0.050 to 0.3
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 10 to 13
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
7.5 to 8.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.5