MakeItFrom.com
Menu (ESC)

EN 1.4404 Stainless Steel vs. S42030 Stainless Steel

Both EN 1.4404 stainless steel and S42030 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4404 stainless steel and the bottom bar is S42030 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 14 to 43
16
Fatigue Strength, MPa 220 to 320
250
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
76
Shear Strength, MPa 420 to 550
410
Tensile Strength: Ultimate (UTS), MPa 600 to 900
670
Tensile Strength: Yield (Proof), MPa 240 to 570
410

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 410
390
Maximum Temperature: Mechanical, °C 950
780
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
28
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 19
10
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 3.8
2.5
Embodied Energy, MJ/kg 52
34
Embodied Water, L/kg 150
110

Common Calculations

PREN (Pitting Resistance) 26
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 210
92
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 800
440
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21 to 32
24
Strength to Weight: Bending, points 20 to 26
22
Thermal Diffusivity, mm2/s 4.0
7.7
Thermal Shock Resistance, points 13 to 20
24

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.3
Chromium (Cr), % 16.5 to 18.5
12 to 14
Copper (Cu), % 0
2.0 to 3.0
Iron (Fe), % 62.8 to 71.5
77.6 to 85
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 2.0 to 2.5
1.0 to 3.0
Nickel (Ni), % 10 to 13
0
Nitrogen (N), % 0 to 0.1
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030