MakeItFrom.com
Menu (ESC)

EN 1.4405 Stainless Steel vs. C33500 Brass

EN 1.4405 stainless steel belongs to the iron alloys classification, while C33500 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4405 stainless steel and the bottom bar is C33500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 17
3.0 to 28
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
40
Tensile Strength: Ultimate (UTS), MPa 860
340 to 650
Tensile Strength: Yield (Proof), MPa 610
120 to 420

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 870
120
Melting Completion (Liquidus), °C 1450
930
Melting Onset (Solidus), °C 1400
900
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 17
120
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
29

Otherwise Unclassified Properties

Base Metal Price, % relative 13
24
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 39
45
Embodied Water, L/kg 130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
8.0 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 950
69 to 860
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 31
12 to 22
Strength to Weight: Bending, points 26
13 to 21
Thermal Diffusivity, mm2/s 4.6
37
Thermal Shock Resistance, points 29
11 to 22

Alloy Composition

Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 0
62 to 65
Iron (Fe), % 73.6 to 80.3
0 to 0.1
Lead (Pb), % 0
0.25 to 0.7
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.7 to 1.5
0
Nickel (Ni), % 4.0 to 6.0
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
33.8 to 37.8
Residuals, % 0
0 to 0.4