MakeItFrom.com
Menu (ESC)

EN 1.4405 Stainless Steel vs. C72150 Copper-nickel

EN 1.4405 stainless steel belongs to the iron alloys classification, while C72150 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4405 stainless steel and the bottom bar is C72150 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
150
Elongation at Break, % 17
29
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
55
Tensile Strength: Ultimate (UTS), MPa 860
490
Tensile Strength: Yield (Proof), MPa 610
210

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 870
600
Melting Completion (Liquidus), °C 1450
1210
Melting Onset (Solidus), °C 1400
1250
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 17
22
Thermal Expansion, µm/m-K 11
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
45
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 2.8
6.1
Embodied Energy, MJ/kg 39
88
Embodied Water, L/kg 130
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
120
Resilience: Unit (Modulus of Resilience), kJ/m3 950
150
Stiffness to Weight: Axial, points 14
9.1
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 31
15
Strength to Weight: Bending, points 26
15
Thermal Diffusivity, mm2/s 4.6
6.0
Thermal Shock Resistance, points 29
18

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.1
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 0
52.5 to 57
Iron (Fe), % 73.6 to 80.3
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.050
Molybdenum (Mo), % 0.7 to 1.5
0
Nickel (Ni), % 4.0 to 6.0
43 to 46
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.8
0 to 0.5
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5