MakeItFrom.com
Menu (ESC)

EN 1.4405 Stainless Steel vs. S44330 Stainless Steel

Both EN 1.4405 stainless steel and S44330 stainless steel are iron alloys. They have a moderately high 93% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4405 stainless steel and the bottom bar is S44330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 17
25
Fatigue Strength, MPa 370
160
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 77
78
Tensile Strength: Ultimate (UTS), MPa 860
440
Tensile Strength: Yield (Proof), MPa 610
230

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 410
560
Maximum Temperature: Mechanical, °C 870
990
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
21
Thermal Expansion, µm/m-K 11
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 13
13
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 39
40
Embodied Water, L/kg 130
140

Common Calculations

PREN (Pitting Resistance) 20
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
91
Resilience: Unit (Modulus of Resilience), kJ/m3 950
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 31
16
Strength to Weight: Bending, points 26
17
Thermal Diffusivity, mm2/s 4.6
5.7
Thermal Shock Resistance, points 29
16

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.025
Chromium (Cr), % 15 to 17
20 to 23
Copper (Cu), % 0
0.3 to 0.8
Iron (Fe), % 73.6 to 80.3
72.5 to 79.7
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0.7 to 1.5
0
Nickel (Ni), % 4.0 to 6.0
0
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030
Titanium (Ti), % 0
0 to 0.8