MakeItFrom.com
Menu (ESC)

EN 1.4406 Stainless Steel vs. C19700 Copper

EN 1.4406 stainless steel belongs to the iron alloys classification, while C19700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4406 stainless steel and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 42
2.4 to 13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
43
Shear Strength, MPa 470
240 to 300
Tensile Strength: Ultimate (UTS), MPa 680
400 to 530
Tensile Strength: Yield (Proof), MPa 320
330 to 520

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 950
200
Melting Completion (Liquidus), °C 1440
1090
Melting Onset (Solidus), °C 1400
1040
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 15
250
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
86 to 88
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
87 to 89

Otherwise Unclassified Properties

Base Metal Price, % relative 18
30
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 3.7
2.6
Embodied Energy, MJ/kg 51
41
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
12 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 260
460 to 1160
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 24
12 to 16
Strength to Weight: Bending, points 22
14 to 16
Thermal Diffusivity, mm2/s 4.0
73
Thermal Shock Resistance, points 15
14 to 19

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 16.5 to 18.5
0
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0
97.4 to 99.59
Iron (Fe), % 63.2 to 71.4
0.3 to 1.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.010 to 0.2
Manganese (Mn), % 0 to 2.0
0 to 0.050
Molybdenum (Mo), % 2.0 to 2.5
0
Nickel (Ni), % 10 to 12.5
0 to 0.050
Nitrogen (N), % 0.12 to 0.22
0
Phosphorus (P), % 0 to 0.045
0.1 to 0.4
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2