MakeItFrom.com
Menu (ESC)

EN 1.4415 Stainless Steel vs. 772.0 Aluminum

EN 1.4415 stainless steel belongs to the iron alloys classification, while 772.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4415 stainless steel and the bottom bar is 772.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 17 to 20
6.3 to 8.4
Fatigue Strength, MPa 470 to 510
94 to 160
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 830 to 930
260 to 320
Tensile Strength: Yield (Proof), MPa 730 to 840
220 to 250

Thermal Properties

Latent Heat of Fusion, J/g 280
380
Maximum Temperature: Mechanical, °C 790
180
Melting Completion (Liquidus), °C 1460
630
Melting Onset (Solidus), °C 1420
580
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 19
150
Thermal Expansion, µm/m-K 9.9
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
110

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 3.6
8.0
Embodied Energy, MJ/kg 51
150
Embodied Water, L/kg 120
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 160
16 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 1350 to 1790
350 to 430
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 29 to 33
25 to 31
Strength to Weight: Bending, points 25 to 27
31 to 36
Thermal Diffusivity, mm2/s 5.1
58
Thermal Shock Resistance, points 30 to 34
11 to 14

Alloy Composition

Aluminum (Al), % 0
91.2 to 93.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 11.5 to 13.5
0.060 to 0.2
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 75.9 to 82.4
0 to 0.15
Magnesium (Mg), % 0
0.6 to 0.8
Manganese (Mn), % 0 to 0.5
0 to 0.1
Molybdenum (Mo), % 1.5 to 2.5
0
Nickel (Ni), % 4.5 to 6.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.010
0.1 to 0.2
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
6.0 to 7.0
Residuals, % 0
0 to 0.15

Comparable Variants