EN 1.4415 Stainless Steel vs. EN 1.8961 Steel
Both EN 1.4415 stainless steel and EN 1.8961 steel are iron alloys. They have 81% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is EN 1.4415 stainless steel and the bottom bar is EN 1.8961 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 200 | |
190 |
Elongation at Break, % | 17 to 20 | |
19 |
Fatigue Strength, MPa | 470 to 510 | |
150 |
Impact Strength: V-Notched Charpy, J | 91 to 110 | |
30 |
Poisson's Ratio | 0.28 | |
0.29 |
Shear Modulus, GPa | 77 | |
73 |
Shear Strength, MPa | 520 to 570 | |
270 |
Tensile Strength: Ultimate (UTS), MPa | 830 to 930 | |
430 |
Tensile Strength: Yield (Proof), MPa | 730 to 840 | |
220 |
Thermal Properties
Latent Heat of Fusion, J/g | 280 | |
250 |
Maximum Temperature: Mechanical, °C | 790 | |
410 |
Melting Completion (Liquidus), °C | 1460 | |
1460 |
Melting Onset (Solidus), °C | 1420 | |
1420 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 19 | |
45 |
Thermal Expansion, µm/m-K | 9.9 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 2.4 | |
7.4 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 2.8 | |
8.5 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 13 | |
2.6 |
Density, g/cm3 | 7.9 | |
7.8 |
Embodied Carbon, kg CO2/kg material | 3.6 | |
1.7 |
Embodied Energy, MJ/kg | 51 | |
23 |
Embodied Water, L/kg | 120 | |
50 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 150 to 160 | |
70 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 1350 to 1790 | |
130 |
Stiffness to Weight: Axial, points | 14 | |
13 |
Stiffness to Weight: Bending, points | 25 | |
24 |
Strength to Weight: Axial, points | 29 to 33 | |
15 |
Strength to Weight: Bending, points | 25 to 27 | |
16 |
Thermal Diffusivity, mm2/s | 5.1 | |
12 |
Thermal Shock Resistance, points | 30 to 34 | |
13 |
Alloy Composition
Aluminum (Al), % | 0 | |
0 to 0.030 |
Carbon (C), % | 0 to 0.030 | |
0 to 0.16 |
Chromium (Cr), % | 11.5 to 13.5 | |
0.35 to 0.85 |
Copper (Cu), % | 0 | |
0.2 to 0.6 |
Iron (Fe), % | 75.9 to 82.4 | |
96.1 to 99.3 |
Manganese (Mn), % | 0 to 0.5 | |
0.15 to 0.7 |
Molybdenum (Mo), % | 1.5 to 2.5 | |
0 |
Nickel (Ni), % | 4.5 to 6.5 | |
0 to 0.7 |
Niobium (Nb), % | 0 | |
0 to 0.065 |
Phosphorus (P), % | 0 to 0.040 | |
0 to 0.040 |
Silicon (Si), % | 0 to 0.5 | |
0 to 0.45 |
Sulfur (S), % | 0 to 0.015 | |
0 to 0.035 |
Titanium (Ti), % | 0 to 0.010 | |
0 to 0.12 |
Vanadium (V), % | 0.1 to 0.5 | |
0 to 0.14 |