MakeItFrom.com
Menu (ESC)

EN 1.4415 Stainless Steel vs. Grade 24 Titanium

EN 1.4415 stainless steel belongs to the iron alloys classification, while grade 24 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4415 stainless steel and the bottom bar is grade 24 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 17 to 20
11
Fatigue Strength, MPa 470 to 510
550
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 77
40
Shear Strength, MPa 520 to 570
610
Tensile Strength: Ultimate (UTS), MPa 830 to 930
1010
Tensile Strength: Yield (Proof), MPa 730 to 840
940

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 790
340
Melting Completion (Liquidus), °C 1460
1610
Melting Onset (Solidus), °C 1420
1560
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 19
7.1
Thermal Expansion, µm/m-K 9.9
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.0

Otherwise Unclassified Properties

Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 3.6
43
Embodied Energy, MJ/kg 51
710
Embodied Water, L/kg 120
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 160
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1350 to 1790
4160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 29 to 33
63
Strength to Weight: Bending, points 25 to 27
50
Thermal Diffusivity, mm2/s 5.1
2.9
Thermal Shock Resistance, points 30 to 34
72

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 11.5 to 13.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 75.9 to 82.4
0 to 0.4
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 1.5 to 2.5
0
Nickel (Ni), % 4.5 to 6.5
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.010
87.5 to 91
Vanadium (V), % 0.1 to 0.5
3.5 to 4.5
Residuals, % 0
0 to 0.4