MakeItFrom.com
Menu (ESC)

EN 1.4415 Stainless Steel vs. C66700 Brass

EN 1.4415 stainless steel belongs to the iron alloys classification, while C66700 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4415 stainless steel and the bottom bar is C66700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 17 to 20
2.0 to 58
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 77
41
Shear Strength, MPa 520 to 570
250 to 530
Tensile Strength: Ultimate (UTS), MPa 830 to 930
340 to 690
Tensile Strength: Yield (Proof), MPa 730 to 840
100 to 640

Thermal Properties

Latent Heat of Fusion, J/g 280
180
Maximum Temperature: Mechanical, °C 790
140
Melting Completion (Liquidus), °C 1460
1090
Melting Onset (Solidus), °C 1420
1050
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 19
97
Thermal Expansion, µm/m-K 9.9
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
17
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
19

Otherwise Unclassified Properties

Base Metal Price, % relative 13
25
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 3.6
2.7
Embodied Energy, MJ/kg 51
45
Embodied Water, L/kg 120
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 160
13 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 1350 to 1790
49 to 1900
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 29 to 33
11 to 23
Strength to Weight: Bending, points 25 to 27
13 to 21
Thermal Diffusivity, mm2/s 5.1
30
Thermal Shock Resistance, points 30 to 34
11 to 23

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0
68.5 to 71.5
Iron (Fe), % 75.9 to 82.4
0 to 0.1
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 0 to 0.5
0.8 to 1.5
Molybdenum (Mo), % 1.5 to 2.5
0
Nickel (Ni), % 4.5 to 6.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.010
0
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
26.3 to 30.7
Residuals, % 0
0 to 0.5

Comparable Variants