MakeItFrom.com
Menu (ESC)

EN 1.4415 Stainless Steel vs. C95200 Bronze

EN 1.4415 stainless steel belongs to the iron alloys classification, while C95200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4415 stainless steel and the bottom bar is C95200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 17 to 20
29
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
42
Tensile Strength: Ultimate (UTS), MPa 830 to 930
520
Tensile Strength: Yield (Proof), MPa 730 to 840
190

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 790
220
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
430
Thermal Conductivity, W/m-K 19
50
Thermal Expansion, µm/m-K 9.9
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
12

Otherwise Unclassified Properties

Base Metal Price, % relative 13
28
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 3.6
3.0
Embodied Energy, MJ/kg 51
50
Embodied Water, L/kg 120
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 160
120
Resilience: Unit (Modulus of Resilience), kJ/m3 1350 to 1790
170
Stiffness to Weight: Axial, points 14
7.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 29 to 33
17
Strength to Weight: Bending, points 25 to 27
17
Thermal Diffusivity, mm2/s 5.1
14
Thermal Shock Resistance, points 30 to 34
19

Alloy Composition

Aluminum (Al), % 0
8.5 to 9.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 11.5 to 13.5
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 75.9 to 82.4
2.5 to 4.0
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 1.5 to 2.5
0
Nickel (Ni), % 4.5 to 6.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0 to 0.010
0
Vanadium (V), % 0.1 to 0.5
0
Residuals, % 0
0 to 1.0